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Mean Field Bound and GHS Inequality 
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A new proof of the mean field bounds for magnetizations is presented. It applies 
to any single-component spin system which allows GHS inequality, and to an 
N-vector model for N >/3, and to an N-solid sphere model for all values of N, 
provided that the interactions are ferromagnetic and translation invariant. 
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1, I N T R O D U C T I O N  

The rigorous statistical mechanics  of classical spin systems is one of the few 
fields of physics in which one can deal with the infinite degrees of f reedom 
in a mathematical ly  sensible manner .  In  fact, the recent developments  in 
the field (especially in the theory of phase transition) have brought  us m a n y  
highly sophisticated nonper turbat ive  analyses, both  qualitative and quanti- 
tative.(1-3) In  spite of all these successes, we cannot  underrate  the worth of 
the most  crude one-body  approximation,  i.e., mean  field theory, since it still 
provides us a good qualitative picture of the phase transition. 

Here, we concentrate  on the rigorous relations between the mean  field 
approximat ion  and corresponding true behavior  of the system. One of them 
is a series of inequalities stating that the mean  field critical temperature 
gives an upper  bound  of the real critical temperature. Another  one, a 
subject of this paper, is the mean  field bound  for the magnetization. It 
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states that the mean field magnetization is always not less than the real 
magnetization. Such an inequality was first proved for sp in- l /2  Ising 
ferromagnets by Thompson. O) And recently, Pearce ~5) extended this result 
to some class of single-component bounded spin systems, and to the 
N-vector models with N = 2, 3. See also Ref. 6 and the references therein 
for the related subjects. 

In this paper, we give a new proof of the mean field bounds for 
magnetizations, based on the GHS inequality. Our result is an extension of 
Thompson's, and it is complementary to that of Pearce's. In particular, our 
method applies to all the single-component spin systems (where spins can 
be bounded or unbounded) which allow the GHS inequality (Section 3). As 
for the multicomponent spin systems, our result is less complete. We prove 
the bounds for the N-vector models with N 1> 3, and for the N-solid sphere 
model with an arbitrary value of N (Section 4). 

Section 2 deals with formal definitions. Our new method appears in 
Section 3. We believe our method is the simplest and the most intuitive 
among the three. 

After this work was submitted, we learned from Professors A. D. 
Sokal and M. Aizenman that our main result was already found by 
Professor C. M. Newman, and was reported on several times. (~7-19) His 
elegant method is based on inequality (10), the equality 8mMF/8 ~ -- 
JmMVSmMF/SH = 0, and the initial condition m(0, H)  = mMF(0, H).  By the 
simple technique of the characteristic curve, these lead to the inequality (8): 
We are grateful to Professors Charles M. Newman, Alan D. Sokal, and 
Michael Aizenman for their kind correspondences. 

2. MODELS AND MEAN FIELD THEORIES 

We first describe our model systems. Let A be an arbitrary lattice 
invariant under translations, 3 for example A = Z a, or T a (d-dimensional 
torus). Spins q~x E R N are associated to each x ~ A, with a priori measure 
dr(q0. 

Properties of the system are characterized by a Hamiltonian of the 
form 

i t =  2 fl x,y~JxYq~x'~Y- H~']~q~t)x (1) 

3 Actually, the "translation" can be any bijection on A. This allows a wide class of lattices 
(Bethe lattice, for example). 
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where q~(i) denotes the ith component of q~x, 
N 

~x " ~'}y = ~ ~)(i) ~O'i) 
i = l  

and we assume that H > 0, Jxy = Jyx > 0, J,,y is invariant under any lattice 
translation, and J = ~yJxy < oo. 

The Gibbs state for Hamiltonian (1) is formally given by 

( . . . ) = f x ~ A d V ( ~ x ) e - ~ (  . . . ) /  f x~adv(q~,)e-a~ (2) 

For infinite A, ( �9 �9 �9 ) is defined as a limit of suitable sequence of the states 
for finite sublattices. (7'8) (Such a state is called a "limit Gibbs state.") For 
the reason which will become clear in Section 3, we consider only the 
translation-invariant states in the following. (It is always possible to take 
such states.) 

The special expectation value we consider is the magnetization (or 
order parameter) for given fl, H, which is defined by 

m(fl, H) = (0 ( ' ) )  (3) 

And the spontaneous magnetization at/3 is 

m s ( B ) =  lim m(fl, H) (4) 
H---~ + 0 

For a wide class of these models [for example, Ising and ~4 models for 
d > 2, isotropic N-component models (N > 2) for d > 3, if A = Za], it has 
been rigorously shown that they undergo phase transitions. (2'7'9) That is, 
there exists a positive/3c (inverse critical temperature) such that ms(/3) = 0 
for/3 < tic and m s (f l)  > 0 for/3 > tic. 

The mean field theory provides a simple picture of these phenomena. 
Mean field magnetization mMF (/3, H)  is defined as a maximum solution of 
the following self-consistent equation: 

(q~(Oexp((H + flJmMF)ep(')})O 
mMF = (exp{(H + /3JmMv)dp(')}) o (5) 

where J = ~yJxy and 

< �9 �9 �9 >0  = f (  �9 �9 �9 (6) 

This mMF (/3, H)  also shows the phase-transition-like behavior. Its "inverse 
critical temperature"/3MF is given by 

/3MvJ<(ep (1))2>o = 1 (7) 
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3. SINGLE-COMPONENT SYSTEMS 

Consider the single-component systems (i.e., N = 1) with a priori 
measure dv(#) of the following types. 4 

1 n (i) Spin-n/2 Ising model: dv(#)-- [1/(n + )]~, j=06(-n + 2j + ~) 
d#. 

(ii) Continuous bounded spin systems: dv(e~) -- g(q~)d#, where supp g 
= [ -a ,a ]  (0 < a < or g(#) is continuously differentiable and strictly 
positive for q, E ( - a , a ) ,  and (g'(q))/g((~)) is concave on [0,a). 

(iii) ~4-1ike (unbounded spin) systems: dv(ep) = e -  v(,) d~ where V(4~) 
x~M a ~2i M /> 2, a I real, a i >1 0 for i >/2, and a M 4:0 (and any well- 

defined limit of these measures). 
Then, the main result of this section is as follows. 

T h e o r e m  1. For a single-component system with a priori measure of 
the type (i)-(iii), we have the following mean field bound for magnetiza- 
tion: 

m(fl ,  H )  < mMV(fl, H ) (8) 

for arbitrary positive (or vanishing) B, H, 

We are going to prove this theorem in the remainder of this section. 
First, note that the GHS inequality 

U 3 ( x ,  y ,  z )  = ( q ' x % q ' z )  - - - 

+ 2 ( ~ x ) ( % ) ( r  < 0 for x , y ,  z E A  (9) 

is known to be valid for all the systems considered in the Theorem 1. (1~ 
This inequality, with the translation invariance, immediately implies the 
following relation(13) : 

am( fl, H )  Om( fl, H )  
Off Jm(f i ,  H)  OH < 0 (t0) 

The basic idea of our proof is to integrate the "differential inequality" (10) 
to get the desired inequality (8). In order to perform the "integration," we 
introduce our "generalized self-consistent equation." 

Definition 2. For any fl, H >1 0 and x E[0,1], m*(x; fl, H)  is a 
maximum solution of the equation 

m* = m(fl(1 - x), O 4- flJxm*) (11) 

4 In this section, we use q~x for spin variables (instead of '~x)" Hamil tonian (1) now becomes 

H = - ( f l / 2 ) 2 J x y e ~ x + y -  H~x+ x 
x,y 
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where m(fl, H) [defined in Eq. (3)] is regarded as a given function of fl 
and H. 

This definition may seem to be too abstract, since we do not know the 
function m( fi, H)  explicitly. But we actually have the following. 

Lemma 3. For fl, H > 0 and x ~ [0, 1], m*(x; fi, H)  exists. 

Proof. Fix fl, H,x and rewrite Eq. (11) as m * =  F(m*). The exis- 
tence of the maximum solution follows from the following properties of 
F(m*). For m* > 0, (a) F(m*) > 0, (b), F'(m*) > 0, (c) F"(m*) < 0, and 
(d) F ' (m*)-~0  as rn*-~ ~ .  The properties (a), (b), and (c) are the conse- 
quences of Griffiths I, II (14) and GHS inequalities. The property (d) is 
trivial for the bounded spin systems [measures of type (i), (ii)]. For the 
unbounded spin systems [measure (iii)], (d) follows from the following 
upper bound for the free energy per site: 

( 1 l n f  e - H  3o"m( fl, H ' )dH'= - f (  fl, H) = - ~  ~x du(ePx) 

< lnfdv(eo)exp[ BJq,2/2 - g(q,) + Heo] 

~ H  [1/(2M-I)]+I a s  H---~ m 

where we used a trivial upper bound r162 < ( ~  + r �9 
Now we prove the increasing property of m*(x; fl, H). 

L e m m a  4. For any fl, H > 0, we have 

m*(x; B,I-/) > 0 
0x  

(12) 

Proof. We only sketch the outline of the proof, since it consists of 
rather tedious estimates. If we differentiate (1 l) by x, we have 

where / 3 - - f l ( 1 -  x), I1= H+ flJxm*(x; fi, H). The right-hand side is 
nonnegative by (10), and also is the prefactor of the left-hand side. This 
follows from the inequality ~m*(x; fl, H)/OH > 0, which is a consequence 
of Eq. (10) and Griffiths II inequality. �9 
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Proof of Theorem 1. It follows from the definition (11) that 
m*(0; /~ ,H)= m(fi, H) and m*(1; r = mMF(/~,H ). Thus mean field 
bound (8) follows by integrating 5 Eq. (12). II 

Observe that, when we increase the parameter x from 0 to I, the 
effective inverse temperature f i =  f l ( 1 -  x) in the "generalized self- 
consistent equation" (11) gradually decreases until it finally becomes 0 (i.e., 
infinite temperature). While, the effective field I] = H + ~Jxrn* increases 
to compensate for this change of temperature. This mechanism of 
"temperature shifting" enables us to compare a system of infinite degrees of 
freedom with an essentially one-bodied system. 

Finally, we note that the mean field bound (8) implies the simple lower 
bound for inverse critical temperature: 

4. MULTICOMPONENT SYSTEMS 

In this section, we follow the idea of Pearce to establish the mean field 
bounds for multicomponent systems. The central idea is to compare them 
with corresponding single-component systems. 

Suppose we are dealing with the N-component system defined by 
Hamiltonian (1). We now define the single-component system correspond- 
ing to (1) by 

fl EJ~yoxOy- H ~ o ~  (13) 
Y l  = - 7 x , s  x 

where ox's are single-component spins with a priori measure, 

d~(o) = fd~(~)  8(~ ~1) _ o) (14) 

We denote the Gibbs state corresponding to (13), (14) as ( . . . ) 1 .  Note 
that this single-component system is obtained by eliminating all the interac- 
tions in Hamiltonian (1) except the first component part, and then integrat- 
ing out the other components of spins. Since the magnetic field H is along 
the first component, the corresponding mean field magnetizations for these 
two systems have exactly the same values. For the "true" magnetizations, 
we restate the following lemma due to Pearce. (s'lS) 

5 For the systems without Lee-Yang  properties, (3"7) one might worry about the differentia- 
bility of m*(x). In such cases, we first take A as a finite lattice, and take the limit [A I-~ 
after establishing the inequality (8). 
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Lemma 5. For the N-component model (1), with a priori measure 
M 

dv(~) = e-U(("~')dNd?, U(x) = ~ a~x ~ a~ real, a~ > 0 for i > 2 
i = 1  

(15) 
and the corresponding single-component model (13), (14), we can state 

%>, >_. (<') )  (]6) 

Proof. Let 

x , y r x  ry  
x , y  

N 

- 13'/2NJx,y N ~x6(i)'~(i)~y _ H~_,q~(,) 
x ,y  i = 2  x 

[Note that (1) and (13) correspond to 13'=/3 and 13'= 0.] We consider 
duplicated sets of spins ( ~ }  and {~2}. Let ( . . - ) a u p  be the Gibbs state 
obtained from the Hamiltonian ~ ( { ~ } ) +  ~((~ '~}) .  As usual, (3'12) we 
define, 

ax = (~(') + r162 B.~ = (#~(') - q~'))/r  

for i 9 q N. -, ~ , . . . ,  
We want to show that 

N N N 

<, A13B 2 2 r   r>dup 
i = 2  i = 2  i = 2  

> 0  

where A, B , . . .  are arbitrary index sets. For this, we note the following (i) 
The Hamiltonian ~Z/~({q~x})+ ~( (q~;})  is still a ferromagnetic 2-form in 
terms of a , /3  . . . .  variables. (ii) The measure is 

U(~ �9 q~) + U(q~' �9 q~') = even - ~ C(k, l)(a13) k 7(08 (0 
k,1 

where C ( k , l ) >  O, and terms denoted "even" are invariant under the 
changes of the signs of a, 13 and 7(~ (~ (simultaneously in i = 2 ,  
3 . . . . .  N). Expanding the exponentials in the integral, and using (i), (ii), 
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we are led to the claimed nonnegativity. So we can state that 

/ 0 ( ~ x ( l ) )  --~- '~"x.l _ 6 ( 1  ) ~'a [d~(i)d~(i ) i)~lz(i) 
y,z ~ i = 2  / d u p  

- 2 4 .  (-x + Bx) 2 (#08:o + .< 0 
, i = 2 dup 

which proves the lemma. �9 
So, if we could bound @x)l by its mean field value, we can state the 

mean field bound of the original N-component system (1). 
In the following, we restrict ourselves to two types of measures, which 

can be obtained as limiting cases of (15). 
(A) N-vector model [or O(N)-Heisenberg model]: 

dv(ep) = 8(gO. eO - 1)dN~ (17) 

This measure is derived by 

l ime  - u(o'*) dNd?, U ( x )  = ~t(x - 1) 2. 

(B) N-solid sphere model: 

= [ dU~, for + .  + < 1 dv(~,) (18) 
L 0, for ~ . q ~ >  1 

This is, lim._.~e r:{,~.~,) dNdp, U ( x )  = x 2n. 
Now, we consider the corresponding single-component systems for (A) 

and (B). In these cases, a priori measures dtt(o)'s for single-component spin 
can be explicitly calculated: 

(A) dtx(o)=(1-o2)(N-3)/2do, o ~ [ - 1 , 1 ]  (19) 

(B) dl~(O) = (1 - o2) (N- l)/2do, o E l - 1 ,  1] (20) 

It is easy to check that these d/x(o)'s are measures of type (ii) (see Section 
3), for N > 3  [case (A)], and for all N > 1 [case (B)]. Thus we are 
automatically led to the following: 

Proposition 6. For the N-vector model (A) with N-> 3, and the 
N-solid sphere model (B) with N > 1, we have the mean field bounds i.e. 

m(B,H)  < mMv(fl, H)  and /?: > /3MF 

Remarks. (1) It is easy to see that for the N-vector model (A), 

/~MF = 1/JN 
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This implies the well-known ~16) lower bound for tic: 

tic >~ 1/JN 
(2) Pearce ~5) proved the mean field bound of the N-vector model for 

N < 3. So the bound for this model has been proved for all values of N. It 
is quite interesting that Pearce's method and ours work in complementary 
regions of N. (After this work was submitted, Ref. 20 appeared in this 
journal. It contains more results about the N-vector model.) 
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